The University of Sheffield
Browse
- No file added yet -

Data Relating to "Micro-CT for analysis of laser sintered micro-composites"

Download (15.03 GB)
dataset
posted on 2020-01-28, 15:45 authored by James Wingham, Candice MajewskiCandice Majewski, Robert Turner, Joanna ShepherdJoanna Shepherd

This contains all of the data presented in:

J.R Wingham et al., "Micro-CT for analysis of laser sintered micro-composites," Rapid Prototyping Journal, 2020. [Online]. Available: https://doi.org/10.1108/RPJ-08-2019-0211


All information regarding this data is included in the above publication, which must be referenced in full if using this data.


Abstract:

X-Ray Computed Micro-Tomography (Micro-CT) is relatively well established in Additive Manufacturing as a method to determine the porosity and geometry of printed parts, and in some cases the presence of inclusions or contamination. This paper demonstrates that micro-CT can be also be used to quantitatively analyse the homogeneity of micro-composite parts, in this case created using Laser Sintering (LS).
LS specimens were manufactured in polyamide 12, with and without incorporation of a silver phosphate glass additive in different sizes. The specimens were scanned using micro-CT to characterise both their porosity and the homogeneity of dispersion of the additive throughout the volume.
This work showed that it was possible to use micro-CT to determine information related to both porosity and additive dispersion from the same scan. Analysis of the pores revealed the overall porosity of the printed parts, with linear elastic fracture mechanics used to identify any pores likely to lead to premature failure of the parts. Analysis of the additive was found to be possible above a certain size of particle, with the size distribution used to identify any agglomeration of the silver phosphate glass. The particle positions were also used to determine the complete spatial randomness of the additive as a quantitative measure of the dispersion.
This shows that micro-CT is an effective method of identifying both porosity and additive agglomeration within printed parts, meaning it can be used for quality control of micro-composites and to validate the homogeneity of the polymer/additive mixture prior to printing.
This is believed to be the first instance of micro-CT being used to identify and analyse the distribution of an additive within a Laser Sintered part.

History

Ethics

  • There is no personal data or any that requires ethical approval

Policy

  • The data complies with the institution and funders' policies on access and sharing

Sharing and access restrictions

  • The data can be shared openly

Data description

  • The file formats are open or commonly used

Methodology, headings and units

  • Headings and units are explained in the files

Usage metrics

    Department of Mechanical Engineering

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC