The University of Sheffield
Browse
1/1
16 files

Exploring physical and digital architectures in magnetic nanoring array reservoir computers

dataset
posted on 2024-04-10, 11:51 authored by Guru VenkatGuru Venkat

Physical reservoir computing (RC) is a machine learning technique that is ideal for processing of time dependent data series. It is also uniquely well- aligned to in materio computing realisations that allow the inherent memory and non-linear responses of functional materials to be directly exploited for computation. We have previously shown that square arrays of interconnected magnetic nanorings are attractive candidates for in materio reservoir computing, and experimentally demonstrated their strong performance in a range of benchmark tasks. Here, we extend these studies to other lattice arrangements of rings, including trigonal and Kagome grids, to explore how these affect both the magnetic behaviours of the arrays, and their computational properties. We show that while lattice geometry substantially affects the microstate behaviour of the arrays, these differences manifest less profoundly when averaging magnetic behaviour across the arrays. Consequently the computational properties (as measured using task agnostic metrics) of devices with a single electrical readout are found to be only subtly different, with the approach used to time-multiplex data into and out of the arrays having a stronger effect on properties than the lattice geometry. However, we also find that hybrid reservoirs that combine the outputs from arrays with different lattice geometries show enhanced computational properties compared to any single array.

History

Ethics

  • There is no personal data or any that requires ethical approval

Policy

  • The data complies with the institution and funders' policies on access and sharing

Sharing and access restrictions

  • The uploaded data can be shared openly

Data description

  • The file formats are open or commonly used

Methodology, headings and units

  • Headings and units are explained in the files

Usage metrics

    Department of Materials Science and Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC