The University of Sheffield
Browse

Quantum scalar field theory on equal-angular-momenta Myers-Perry-AdS black holes

Data for the paper "Quantum scalar field theory on equal-angular-momenta Myers-Perry-AdS black holes", arXiv:2412.02814 [hep-th].

We study the canonical quantization of a massive scalar field on a five dimensional, rotating black hole space-time. We focus on the case where the space-time is asymptotically anti-de Sitter and the black hole's two angular momentum parameters are equal. In this situation the geometry possesses additional symmetries which simplify both the mode solutions of the scalar field equation and the stress-energy tensor. When the angular momentum of the black hole is sufficiently small that there is no speed-of-light surface, there exists a Killing vector which is time-like in the region exterior to the event horizon. In this case classical superradiance is absent and we construct analogues of the usual Boulware and Hartle-Hawking quantum states for the quantum scalar field. We compute the differences in expectation values of the square of the quantum scalar field operator and the stress-energy tensor operator between these two quantum states.


Funding

Consortium for Fundamental Physics - Particle Cosmology and Fundamental Physics: From the Early to the Present Universe

Science and Technology Facilities Council

Find out more...

History

Ethics

  • There is no personal data or any that requires ethical approval

Policy

  • The data complies with the institution and funders' policies on access and sharing

Sharing and access restrictions

  • The uploaded data can be shared openly

Data description

  • The file formats are open or commonly used

Methodology, headings and units

  • There is a file including methodology, headings and units, such as a readme.txt

Responsibility

  • The depositor is responsible for the content and sharing of the attached files