Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection
Abstract
Salmonella Typhi activates the host DNA damage response through the typhoid toxin, facilitating typhoid symptoms and chronic infections. Here we reveal a non-canonical DNA damage response, which we call RING (response induced by a genotoxin), characterized by accumulation of phosphorylated histone H2AX (γH2AX) at the nuclear periphery. RING is the result of persistent DNAdamage mediated by toxin nuclease activity and is characterized by hyperphosphorylation of RPA, a sensor of single-stranded DNA(ssDNA) and DNA replication stress. The toxin overloads the RPA pathway with ssDNA substrate, causing RPA exhaustion and senescence. Senescence is also induced by canonical γΗ2ΑΧ foci revealing distinct mechanisms. Senescence is transmitted to non-intoxicated bystander cells by an unidentified senescence-associated secreted factor that enhances Salmonella infections. Thus, our work uncovers a mechanism by which genotoxic Salmonella exhausts the RPA response by inducing ssDNA formation, driving host cell senescence and facilitating infection.
Funding
The cellular mechanisms underpinning the host restriction of Salmonella Typhi
Medical Research Council
Find out more...History
Ethics
- There is no personal data or any that requires ethical approval
Policy
- The data complies with the institution and funders' policies on access and sharing
Sharing and access restrictions
- The data can be shared openly
Data description
- The file formats are open or commonly used
Methodology, headings and units
- There is a file including methodology, headings and units, such as a readme.txt