The University of Sheffield
F88.pdf (934.62 kB)

CCWI2017: F88 'Optimising a Fuzzy Logic Real-Time Control System for Sewer Flooding Reduction using a Genetic Algorithm'

Download (934.62 kB)
journal contribution
posted on 2017-09-01, 15:00 authored by William ShepherdWilliam Shepherd, Stephen Mounce, S. Ostojin, M. Abdel-Aal, Alma SchellartAlma Schellart, P. Skipworth, Simon TaitSimon Tait
CENTAUR aims to provide an innovative, cost effective, local autonomous data driven in-sewer flow control system whose operation will reduce urban flood risk. The system comprises of a specially designed flow control device and a wireless local water level monitoring and control system. A data driven algorithm has been developed that is able to analyse the water level data and issue instructions to the flow control device to reduce flood risk at the downstream flooding location. This Fuzzy Logic control algorithm has been linked to a SWMM model to allow virtual testing to take place and provide the basis for a Genetic Algorithm to optimise the Fuzzy Logic membership functions. Methods for generating the initial starting membership functions for input to the Genetic Algorithm have also been investigated. Results confirm that the best Genetic Algorithm optimised Fuzzy Logic controllers reduce flood volume by up to 25% depending on the timestep at which the algorithm is run and the membership function initialisation method.


Usage metrics

    Department of Civil and Structural Engineering



    Ref. manager