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Overview

 Computational Challenges in Off-Shore Drilling
* 1-D Advection

* Numerical diffusion reduction method

* Advection-Diffusion-Operator Algorithm

e Standard Adv-Diff. Method, FTCS

* Testing Advection-Diffusion Algorithm

* Laminar Dispersion
* |ldeas about Transition Dispersion

e Conclusions



Off-Shore Drilling Challenges

* Depths of several thousand meters
 Pump rates of thousands of liters per minute
* Open Hole and Casing ID ~ 12" - 13"
* Drill String OD ~ 5.5”
 Temperatures range: 0°C — 200°C (HPHT)
* Pressure range: 1 bar — 1400 bar (HPHT)
* Hydrocarbon and Drilling Mud Chemistry
* Volume and phase changes (2 phase flow)
* Interaction between Oil Based Mud and
Gas/Oil influx from well —
 Using mud “pills” (Well cleaning, MPD operations, A
Cementing, etc..)

Riser
1296 m
Choke & Kill Lines

Casing =3062 m

Example well (not HPHT)

Dynamic simulations can not be slower than real time!!



Divide and Conquer Approach

> Example ( 7 segments)
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Discretization
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Conservation of Mass

dp
E-I_ V:-(pu) =0

Integrate over a pipe box volume:

Uf — dVol+Uf V:(pu)dVol =0
vol(i) 9t Vol(i)

[ff, . p(t+At)dvol — [ff, . . p(t) dVol
Vol(i) Vol(i) n # ou-f dS=0
At surface(i)

Mass(t+At) - Mass(t) - A, p, U (At + Ay py U jAt=0

Mass(i, t+At) = Mass(i, t) + AMass, (i, t) — AMass(i, t)



Conservation of Momentum

t+p(u VVu=pg—VP-V- T

3 : \

Acceleration . Shear stress
Bernoulli

tensor
S effect

e Set Accelerationterm =0
* Assume steady state
circulation

* Ignore Bernoulli effect | | Divergence of Shear Stress Tensor:
e Small effect Frictional pressure gradient due
* Non-permanent to fluid viscosity and pipe roughness

* Ignore sound pulses

IDdown = IDup B IDfric B 8 L cosB

pave rage



Sub-Boxes reduce numerical diffusion
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Circulation Example with Sub-Boxes N >4
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Numerical Diffusion Examples

Concentration
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Pro’s and Con’s

* Pro’s
* Higher spatial resolution
* Numerical diffusion decreases rapidly with N
* No Front-tracking

e Certain computations become simpler (simpler iteration in
computing Py, nstream 1N €ach box)

* Modelling physical dispersion between fluid fronts is possible
e Con’s
* Increased number of boxes - some computation increases
with the extra number of boxes
* Book-keeping of masses going through a box in one time-step



Diffusion Equation

1-d diffusion eq.:

* A point source will diffuse with a Gauss distribution
* Width of the Gauss curve is only function of

time and diffusion coefficient, D.

* The diffusion curve will spread the same when
u=0, as when u = u, and the observer travels

with u = u,.
e Simplify by solving
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Computing diffusion operator

* A pipe stretching from —X to +X, is discretized in many boxes, each
with box length, L.

e All boxes are filled with fluid, but the box in the “middle”, x=0, is
filled with a tracer (unit volume concentration).

e After a time step, At, with diffusion constant, D, the tracer
concentration, or Dispersion Weight, DW, in the nearby boxes are:

DW()) 05_ f(jL-l_%) f(jL_%)
= U. er — er
i VAmDAt VArDAt/

“erf” is the error function, and j=0 at the “middle” position.



Computing diffusion operator weights

 DW(j) approaches zero as j approaches +/- «©
* Truncation needed!

 Decide on a truncation value, TruncVal. Example, Trunc Val = 0.99
* Find NDmax such that

DW(0) + X322 x DW(j) = 0.99

* Problem: Does not conserve mass!

Compare 2 Methods/Fixes that will conserve mass:

Simple Method (SM) Truncated Gauss(TG)
DW¢(0) = 1 - X724 2 x DW()) DWSum =1 + Y2 2 x DW(j)

DW_.(j) = DW(])/DWSum




Diffusion/Turbulent Flow Dispersion Operation

Before Diffusion/After Advection: Mass of type k in box i is Mass(k,i)

After the Diffusion, the new mass of type k in box i, Mass(k,i), is:

Mass(k,i) = Mass,(k,i) x DW(0) + X Y/"** DW(j) x (Mass(k,i-j) + Mass(k,i+j))

The truncation of the Gauss curve effectively reduces the Diffusion Constant.

Introduce Multiplicative Correction Factor to obtain optimal operator for
Simple Method and Truncated Gauss, MCF,, and MCF,..

Truncated Gauss

Simple Method
D;c= MCF;; x D

D= MCF,,, X D

MCF,, and MCF,; are found through iterative search.



Example

Fluid (salt water)
Density
Temperature

Kinematic Viscosity

Superficial Flow Velocity, U,
Pump Rate

Pipe Diameter, d
Reynolds Number, Re
Diffusion Coefficient

Tracer Volume

Initial tracer position

Salinity 1 g/kg
999 kg/m?3
20°C
1.0047 x 10® m?/s
0.75m/s
45 |/min
0.0356825 m
26636
0.011243 m?/s

1dl
From 0.1 mto0.2m

D=U,_d (1.17-10° Re’25 + 0.41)

3000 < Re < 50000

Diffusion coefficient
according to Hart et al. (2016)

Follow tracer for 4 sec, until tracer center is at 3.15 m



Seven different Cases

Case # At L U,At/L | TruncVal |NDmax
] 0.0ls | 0.00l m 7.5 0.999 50
2 0.0Is | 0.00l m 7.5 0.995 43
3 0.0ls | 0.00l m 7.5 0.99 40
4 00Is | 0.00l m 7.5 0.985 39/38
5 0.0l s | 0.0005 m 15 0.99 81/80
6 0.005s | 0.0005 m 7.5 0.99 57
7 0.05s | 0.005m 7.5 0.99 18




Compare numerical method to exact values
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“Standard” numerical solution for
Advection-Diffusion Equation, 2 cases

* FTCS, Explicit Forward difference estimate for the Time derivate (FT),
and Central difference approximation for the Space derivatives (CS).

(i) = At [D (C(i+1) — 2C(i) + C(i-1))/L2 = U, (C(i+1) —C(i-1))/(2At)]

Cnew

e Stability criterion:

DAt
FTCS Case # At L
1 0.001 s 0.005m

2 0.00004 s 0.001 m




Results

Case Trunc Val | Error SM | Error TG At L

#1 0.999 2.68 x 10 | 2.23 x 10-° 0.01s 0.001 m
#2 0.995 4.8 x10°% | 4.7 x 10 0.01s 0.001 m
#3 0.99 6.1 x10% | 6.4 x 10 0.01s 0.001 m
#4 0.985 47.0 x 106 | 43.4 x 10 0.01s 0.001 m
#5 0.99 5.8 x10% | 6.4 x 10 0.01s 0.0005 m
#6 0.99 4.6 x 106 | 3.6 x 10 0.005 s 0.0005 m
#7 0.99 25.6 x 106 | 26.6 x 10 0.05 s 0.005 m

FTCS #1 1700.0 x 106 0.001 s 0.005 m

FTCS #2 49.0 x 106 0.00004s | 0.001 m

* Using Diffusion Operators produce lower or equivalent errors to the FTCS method
* Diffusion Operator method should use Truncation Values greater than 0.985
e Comparing Case #7 and FTCS #2:

e Case #7 has roughly half the error of FTCS #2
e Case #7 has a “box length” which is 5 times larger than that of FTCS #2

e Case #7 has a time-step which is 1250 times larger than that of FTCS #2.




What about the Multiplicative Correction Factors?

MCF vs. TruncVal, Simple Method MCF vs. TruncVal, Truncated Gauss
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MCF is nicely dependent on Truncation Value.  (2"9 order polynomial Least Sq. Fit)
A truncation of 1% reduces the Diffusion Constant with roughly 9%.



Dispersion in Laminar Flow

* Laminar flow: Fluid velocity vector “only” along the pipe (no radial
component) U,

* Velocity profile: U(r) = 2 U, (1 —r?/R?) L‘\
* A small fluid “package” situated at r, will ' ~

have a velocity U(r,) all along the pipe. ' ?/

e Simulation strategy
* Divide cross-sectional area into N equal sized sub-areas
* Relative flux through each area: RelFlux(i) = (2(N-i)+1)/N?
* i=1istheinnermost area




Dispersion in Laminar Flow 1-d ++ model

ety

* N pipes of equal volumes

* Each 1/N volume of the “main” pipe

* Solve one time-step Convection of main pipe
* Pressure computed in every numerical box

* Do displacement for each sub-pipe
e RelFlux(i) = (2(N-i)+1)/N?
* Small radial dispersion between neighbor pipes _
* New “main” pipe = sum of sub-pipes
* Solve on time-step Convection |
of updated main pipe +
* Etc. 4



Dispersion with Laminar Flow

Concentration at 10.98 m, Re =2670
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Comparison with James Hart’s experiment
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Dispersion in Laminar-Turbulent Transitional Flow

Very simplified approach: Gradual “flattening” at center of average velocity profile.

Laminar flow - Axial velocity vs. Radial position Turbulent Flow - Ave. Axial velocity vs. Radial position

Flow Velocity (arbitrary units)

Average Flow Yelocity (arhitrary units)

Laminar
Radi-al Position (arbitrary units) LOW Shear ngh Sheér 7 7 Rad{al Position (arbitrary units
Low Friction Factor High Friction Factor

: . Turbulent
Laminar Increasing Re =——p



Dynamically, Dr. C.Mills* work doesn’t support this:

@ + (f ((( ) \,)l i z @

Near laminar flow

interrupted by \ | Re No 3250
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Used by permission from Dr. Christopher Mills.

*Mills, Christopher, 2020, “Identifying the transition between laminar and turbulent flow using high-frequency pressure
loss measurements”, Coventry University Engineering Doctorate Thesis, May 2020,
https://pureportal.coventry.ac.uk/en/studentTheses/identifying-the-transition-between-laminar-and-turbulent-flow-usi



Dispersion in Transitional Flow
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Conclusions

* Advection-Diffusion Dynamic Simulator (Dispersion with Turbulent Flow)
* Fast
* Accurate
* Flexible
 Laminar Flow
* Promising results
* Fits in same numerical frame-work as Dispersion with Turbulent Flow
* Transitional Flow
 Work needs to be done
* Fits in same numerical frame-work as Laminar & Turbulent Flow

When Transitional Flow simulator has been “verified”, this can become:
Dynamical Simulator that will in run-time pass between Laminar,
Transitional and Turbulent Flow as flow rates change and valves open and shut.



Questions/Comments?
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