Published work: Vastil, K., Oh, J., Sonnenwald, F., Ji, U., Jarvels, J.,
Bae, |., and Guymer, |.: Longitudinal dispersion affected by willow
patches of low areal coverage, Hydrological Processes,
https://doi.org/10.1002/hyp.14613

Longitudinal dispersion
affected by willow patches

Kaisa Vastila', Jungsun Oh?, Fred
Sonnenwald?, Un Ji?, Juha Jarvela',
Inhyeok Bae, lan Guymer3

1Department of Built Environment, Aalto
University, Espoo, Finland

2 Korea Institute of Civil Engineering and Building
Technology, Goyang-Si, Korea

3 Department of Civil and Structural Engineering, University
of Sheffield, UK

4 Department of Civil Engineering, Kunsan National
University, South Korea




Motivation & objectives

Vegetation significantly controls the transport of soluble compounds influencing e.g. the
fate of nutrients

Focus mostly on non-vegetated or fully vegetated flows, at small scale or with simplified
vegetation

Limited understanding from the reach scale with vegetation patches

We aim at

1) investigating longitudinal dispersion in a reach with real-scale flexible woody
vegetation patches and
2) evaluating selected predictors for Dy under patchy

vegetation conditions
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Prototype-scale 80 m long study reach
with natural-like patches

Outdoor experiment channel at KICT-REC in Korea

Artificial emergent foliated plants resembling Salix subfragilis

3 patch layouts with 1-1.6 m wide and 3-4 m long patches

Coverage, plant density, and spatial distribution of patches was varied
Flow field measured with ADCP




Key properties of the vegetation patches
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8 experimental runs with salt tracing

7 vegetated + 1 unvegetated reference run, incl. repetitive traces
Mean flow velocities: 0.33-0.62 m/s

Flow depths: 0.73-0.94 m

Wetted surface widths: 5.8-6.7 m

Near-instantaneous slug injection with complete lateral mixing
before study reach

1-3 EC sensors in 2 cross-sections
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Deriving ADE and ADZ parameters

Longitudinal dispersion coefficient D, through Advection-dispersion Eq. routing:

S(x1,Y)U [_Uz(f—t+y)2] dy (1)

(00}

where S(x4,f) is the observed upstream temporal concentration profile at time instant , S(x,,f) is the observed downstream
temporal concentration profile, U is mean longitudinal velocity, and t is mean travel time (Rutherford 1994).

Aggregated dead zone model (ADZ) routing:
S™ = exp(—aAt)S™ ! + (1 — exp(—aAt))Sm—o-1 (2)
where S™ and S™' are concentrations at times mAt and (m — 1)At, a is cell time constant and ¢ = floor(7/At) (Rutherford 1994).

-> dispersive fraction (volume contributing to dispersion per total reach volume)
Dy = 1/(atapz)



Vegetation patches diverted the flow to unvegetated parts
of the cross-section y_@irvziwz
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Dense and high-blockage patches increased the highest
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Both ADE and ADZ approaches could be fitted at least
satisfactorily to all runs
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Plant patches decreased peak concentrations and increased
residence times compared to non-vegetated conditions

Synthetic upstream concentration profile and predicted downstream concentrations
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The patches influenced dispersion via their plant density,
volumetric coverage and spatial distribution
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The influence of vegetation patches on dispersion is opposite than for uniform vegetation



Analytical models for non-vegetated and fully vegetated

flows could not predict the patch effects on dispersion

Lightbody & Nepf (2006) and Sonnenwald et al. (2019a) for fully vegetated flows predicted 1-2 orders of
magnitude too low values
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Other examined predictors of Dy
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Dependence on f/LAIl and standardized Morisita index also weak



New findings on describing the patch effects on reach-

scale dispersion
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Longitudinal dispersion Dy is controlled
by the lateral velocity differential, which
depends on vegetation patch layout.
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Conclusions & future work

Low-coverage, dense vegetation patches notably increased dispersion

We proposed differential velocity as a new basic estimator of the dispersion
coefficient under patchy vegetation

Such rare full-scale analyses will improve the predictions of the transport and
retention of pollutants in real vegetated flows and help optimize NbS

Further experiments with lower (and higher) mean velocities and medium patch
coverages of ~20-50% would help in extending the observed relationships
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