Characterization of Hydrodynamics and Mixing
Processes in Obstructed Flows

‘ 7~ o~

us Leonardo Corredor Garcia

University of Sheffield

—~ o~
-
@ e @/

Mixing Processes in Pipes, Sewers & the Natural Environment — from Theory to Practice
18t & 19t April 2023, University of Sheffield, UK.

NN UI'llV@I'Slt of % . Engineering and
S Physical Sciences
’ Shel I Ield Re:rearch Council




Diffusion in Obstructed Flows

= Diffusion/Dispersion quantifies the increase in spread of a
Lagrangian ensemble.

= Experiments designed to measure multi-point velocity
statistics (Eulerian FoR) and relate empirically to
Lagrangian statistics in obstructed (cylinder) flows.
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Diffusion in Obstructed Flows

The objective is to obtain the Lagrangian velocity correlation function, R,,(t), from the measured Eulerian
functions R,,, (£, 0).

However, this is an undetermined mathematical problem*

should be applied. 2 similarity assumptions are applied:

Taylor’s rate of diffusion:
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Similarity between particle trajectories

Measurements show that no
momentum transfer occurs between
adjacent cylinder wakes.

The probability distribution of particle
trajectories inside the wake is therefore
similar to that of a predetermined path
along the wake centreline.

vT: transverse turbulence intensity

* Lumley, J.L.: The Mathematical Nature of the Problem of Relating Lagrangian and Eulerian Statistical Functions in Turbulence.
In: Mecanique de La Turbulence, pp. 17-26. Editions du Centre National de la Recherche Scientifique, Paris (1962).



R, is estimated along a predetermined path.
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Diffusion in Obstructed Flows

Comparing estimations of the cylinder wakes show that it
is possible to reproduce the effects of the adjacent flow
field, and the diffusive wake downstream of a cylinder.
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The RandoSticks System

RandoSticks morphology RandoSticks Layout Optical System

From characterisation of 1.0 m x 1.0 m Repeated LIF: 4 lasers
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Laser Induced Fluorescence - Calibration

Beam Intensity for PIP0 =63%
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Laser Induced Fluorescence Experiments
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LIF Results 107 @y, =045m w y, =050m Ay =055m
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=  Results show no effects of initial conditions
on long-term dispersion.

" Dy and D, are proportional to Rey:

increases in advection, turbulence and
shear contribute to mixing.
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LIF Results
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flow regime. Morphology is the dominant
driver of dispersion.
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LIF — Previous Results
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Particle Image Velocimetry

Challenges: 0.02 0.04 0.06 0.08 0.1 0.12 0.14
* Light Intensity

0.3
* Contrast

e Light uniformity

* Particle Image density 325
Strategies:
_ _ 0.2
e Subtraction of Light
heterogeneities (unseeded 3
images —
ges) = 0.15
* Directional Light
Attenuation Correction
* Image Levelization 0.1
* Filtering and Signal
Improvement 0.05

6 Experiments: 110 < Re; < 800
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PIV — Mean Velocity Maps

Velocity Defect Zones

Acceleration Zones
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PIV — Virtual Stresses/Fluxes

The Double-Average (DA) framework
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Turbulent fluxes are isotropic Temporal fluctuations of velocity are
in a DA sense dominant for Re; < 250
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PIV — Dispersion Regimes

Laminar range: trapping dominates D,. Exchange rates are
governed by molecular diff.

Turbulent range: Dispersion is dominated by shed vortices.
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Transition range: Small-scale mixing more effective, and

predominance of differential advection.

Advective range: Dispersion is purely Fickian.
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PIV — Flow Scales

—o—d —v—S_ +At +Axy

The variation of A; and A, reflect the

existence of flow structures from non-linear
cylinder interactions: clusters.

Steps ahead...

= Simultaneously apply PLIF and PIV to estimate

—
mass flux terms: (u;C’) and (w; 'C ). Solve the
ADE in a DA framework.

= Evaluate the range of (non-linear) interactions
between groups of cylinders to establish what
governs the creation of clusters/acceleration gaps.

=  Apply Decomposition techniques to evaluate the
energy distribution of the range of vegetated flow

scales. | | |
_ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
= Relate fluxes to morphological parameters. Length Scale, A [m]
Unlver51t of S,,. edge-to-edge cylinder spacing

Shefﬁeld Flow scales derived from velocity series at points (A;) and transects (Ay.).
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